EXTRACTION OF TITANIUM DIOXIDE (TiO2) FROM IRON SAND OF TEMBAKAK BEACH WEST COAST AS NANOPARTICLES USING HYDROMETALLURGY METHOD
DOI:
https://doi.org/10.23960/analit.v9i01.165Keywords:
Concentration, Extraction, HydrometallurgyAbstract
The iron sand sample came from Tembakak Beach, Pesisir Barat Regency, was prepared and then analyzed using XRF, obtained an Fe content of 58.294%; Si 18.525%; Ti 8.775%; Al 6.785%; Ca 3.885%; K 1.624%, as well as minor elements with a content below 0.5%. Titanium dioxide (TiO2) can be obtained from ilmenite (FeTiO3), by hydrometallurgical extraction methods. The extraction results were analyzed using XRF, obtained TiO2 at varying concentrations of HCl 7 Μ of 15.033%, HCl 9 Μ of 16.367%, and HCl 12 Μ of 17.421%. XRD characterization of TiO2 extraction results with variations in HCl concentration of 12 Μ shows that TiO2 has a rutile crystal phase with a tetragonal crystal structure, and has a particle size of 33.92 nm so that the TiO2 particles obtained are nanoparticles that play an important role in technological and industrial development.
References
Abdullah, M., Virgus, Y., & Khairurrijal. (2008). Review: Sintesis Nanomaterial. Jurnal Nanosains dan Nanoteknologi, 1(2), 33–57.
Acikgoz, M. (2012). A Study of The Impurity Structure for 3d3 (Cr3+ and Mn4+) Ions Doped into Rutile TiO2 Crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 417–422. https://doi.org/10.1016/j.saa.2011.10.061.
Agusu, L., & Yuliana. (2017). Fabrikasi Komposit Graphene/TiO2/PAni sebagai Bahan Elektroda Baterai Lithium-Ion (Li-Ion). Jurnal Aplikasi Fisika, 13(1), 33–40.
Akakuru, O. U., Iqbal, Z. M., & Wu, A. (2020). TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine. Germany: Wiley-VCH.
Anbarasu, M., Anandan, M., Chinnasamy, E., Gopinath, V., & Balamurugan, K. (2015). Synthesis and Characterization of Polyethylene Glycol (PEG) Coated Fe3O4 Nanoparticles by Chemical Co-Precipitation Method for Biomedical Applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 536–539. https://doi.org/10.1016/j.saa.2014.07.059.
Bahfie, F., Harahap, E. A., Alfarisy, M. I., & Arham, L. O. (2022). Pengolahan Pasir Besi untuk Meningkatkan Kadar Titanium (Ti) dengan Metode Pemisahan Magnetik Secara Basah. Inovasi Pembangunan: Jurnal Kelitbangan, 10(3), 237–246. https://doi.org/10.35450/jip.v10i03.323.
Dastan, D., & Chaure, N. B. (2014). Influence of Surfactants on TiO2 Nanoparticles Grown by Sol-Gel Technique. International Journal of Materials, Mechanics and Manufacturing, 2(1), 21–24. https://doi.org/10.7763/IJMMM.2014.V2.91.
El-Hazek, N., Lasheen, T. A., El-Sheikh, R., & Zaki, S. A. (2007). Hydrometallurgical Criteria for TiO2 Leaching from Rosetta Ilmenite by Hydrochloric Acid. Hydrometallurgy, 87(1–2), 45–50. https://doi.org/10.1016/j.hydromet.2007.01.003.
Ermawati, R., Naimah, S., & Ratnawati, E. (2011). Monitoring dan Ekstraksi TiO2 dari Pasir Mineral. Jurnal Kimia dan Kemasan, 33(2), 131–136. https://doi.org/10.24817/jkk.v33i2.1841.
Firdaus, I., Stevani, A., Handayani, Y. N., Febriyanti, N., Marjunus, R., & Manurung, P. (2021). Synthesis and Characterization of TiO2 from Lampung’s Iron Sand Using Leaching Method with Temperature Variation. Jurnal Fisika dan Aplikasinya, 17(2), 37–40. https://doi.org/10.12962/j24604682.v17i2.7921.
Izaak, M. P., Gunanto, Y. E., Sitompul, H., & Adi, W. A. (2021). The Optimation of Increasing TiO2 Purity Through a Multi-level Hydrometallurgical Process. Materials Today: Proceedings, 44, 3253–3257. https://doi.org/10.1016/j.matpr.2020.11.508.
Jalaludin, M., Giovano, H., & Baihaqy, M. (2021). Analisis Bentukan Lahan di Sepanjang Bukit Barisan, Kabupaten Pesisir Barat, Provinsi Lampung. Jurnal Samudra Geografi, 4(1), 10–15. https://doi.org/10.33059/jsg.v4i1.2485.
Jameel, Z. N., Haider, A. J., & Taha, S. Y. (2014). Synthesis of TiO2 Nanoparticles by Using Sol-Gel Method and its Applications as Antibacterial Agents. Engineering and Technology Journal, 32(3), 418–426. https://doi.org/10.30684/etj.32.3B.4.
Kim, H., Cho, M. Y., Kim, M. H., Park, K. Y., Gwon, H., Lee, Y., Roh, K. C., & Kang, K. (2013). A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode. Advanced Energy Materials, 3(11), 1500–1506. https://doi.org/10.1002/aenm.201300467.
Kim, T. K., Lee, M. N., Lee, S. H., Park, Y. C., Jung, C. K., & Boo, J. H. (2005). Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification. Thin Solid Films, 475(1–2), 171–177. https://doi.org/10.1016/j.tsf.2004.07.021.
Ko, H. H., Chen, H. T., Yen, F. L., Lu, W. C., Kuo, C. W., & Wang, M. C. (2012). Preparation of TiO2 Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens. International Journal of Molecular Sciences, 13(2), 1658–1669. https://doi.org/10.3390/ijms13021658.
Komalasari, M., Akbar, T. F., & Sunendar, B. (2014). Pengaruh Konsentrasi Kitosan pada Sintesis Nanopartikel TiO2 untuk Aplikasi pada Dye Sensitized Solar Cell (DSSC). Jurnal Teknologi Bahan dan Barang Teknik, 4(1), 13–18. https://doi.org/10.37209/jtbbt.v4i1.42.
Lalasari, L. H., Firdiyono, F., Yuwono, A. H., Harjanto, S., & Suharno, B. (2012). Preparation, Decomposition, and Characterizations of Bangka - Indonesia Ilmenite (FeTiO3) Derived by Hydrothermal Method Using Concentrated NaOH Solution. Advanced Materials Research, 535–537, 750–756. https://doi.org/10.4028/www.scientific.net/AMR.535-537.750.
Larraza, I., Lopez-Gonzalez, M., Corrales, T., & Marcelo, G. (2012). Hybrid Materials: Magnetite–Polyethylenimine–Montmorillonite, as Magnetic Adsorbents for Cr(VI) Water Treatment. Journal of Colloid and Interface Science, 385(1), 24–33. https://doi.org/10.1016/j.jcis.2012.06.050.
Li, C., Liang, B., Song, H., Xu, J., & Wang, X. (2008). Preparation of Porous Rutile Titania from Ilmenite by Mechanical Activation and Subsequent Sulfuric Acid Leaching. Microporous and Mesoporous Materials, 115(3), 293–300. https://doi.org/10.1016/j.micromeso.2008.01.045.
Mahshid, S., Askari, M., & Ghamsari, M. S. (2007). Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. Journal of Materials Processing Technology, 189(1–3), 296–300. https://doi.org/10.1016/j.jmatprotec.2007.01.040.
Middlemas, S., Fang, Z. Z., & Fan, P. (2013). A New Method for Production of Titanium Dioxide Pigment. Hydrometallurgy, 131–132, 107–113. https://doi.org/10.1016/j.hydromet.2012.11.002.
Nguyen, T. H., & Lee, M. S. (2019). A Review on the Recovery of Titanium Dioxide from Ilmenite Ores by Direct Leaching Technologies. Mineral Processing and Extractive Metallurgy Review, 40(4), 231–247. https://doi.org/10.1080/08827508.2018.1502668.
Ningsih, S. K. W. (2016). Sintesis Anorganik. Padang: UNP Press Padang.
Priharyono, S. S., & Gusmarwani, S. R. (2022). Pengambilan Titanium Dioksida (TiO2) dari Pasir Besi Kulon Progo dengan Metode Hidrometalurgi (Variabel Waktu dan Perbandingan Massa). Jurnal Inovasi Proses, 7(1), 1–8. https://doi.org/10.34151/jip.v7i2.4222.
Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., & Edwards, P. P. (2002). Size-Dependent Chemistry: Properties of Nanocrystals. Chem. Eur. J., 8(1), 29–35. https://doi.org/10.34151/jip.v7i2.4222.
Rasyid, S. (2014). Teknologi Pengolahan Logam. Yogyakarta: Deepublish.
Rohmawati, L., Istiqomah, Wulancahayani, E., Hefdea, A., & Setyarsih, W. (2020). Nanocrystaline Titanium Dioxide Nanotube (TDN) by Hydrothermal Method from Tulungagung Mineral Sand. Proceedings of the International Conference on Research and Academic Community Services (ICRACOS 2019), 390, 107–109. https://doi.org/10.2991/icracos-19.2020.22.
Sari, A., & Suprapto. (2014). Studi Pengaruh Dekomposisi Pasir Besi dengan NaOH Terhadap Pemisahan Titanium. Jurnal Sains dan Seni Pomits, 1–7.
Sumari, S., Asrori, M. R., Prakasa, Y. F., Baharintasari, D. R., & Santoso, A. (2023). Silica Extract from Malang Beach Sand via Leaching and Sol-Gel Methods. International Journal of Advances in Applied Sciences, 12(1), 74–81. https://doi.org/10.11591/ijaas.v12.i1.pp74-81.
Supriyatna, Y. I., Sumardi, S., Astuti, W., Nainggolan, A. N., Ismail, A. W., Petrus, H. T. B. M., & Prasetya, A. (2020). Characterization and a Preliminary Study of TiO2 Synthesis from Lampung Iron Sand. Key Engineering Materials, 849, 113–118. https://doi.org/10.4028/www.scientific.net/KEM.849.113.
Tao, T., Qi-yuan, C., Hui-ping, H., Zhou-lan, Y., & Ying, C. (2012). TiO2 Nanoparticles Prepared by Hydrochloric Acid Leaching of Mechanically Activated and Carbothermic Reduced Ilmenite. Transactions of Nonferrous Metals Society of China, 22(5), 1232–1238. https://doi.org/10.1016/S1003-6326(11)61310-1.
Thahir, R., Wahab, A. W., Nafie, N. La, & Raya, I. (2019). Sintesis dan Karakterisasi Nanopartikel TiO2 sebagai Adsorben Pengolahan Limbah Zat Warna Methylene Blue. Jurnal Rekayasa Kimia dan Lingkungan, 14(1), 19–27. https://doi.org/10.23955/rkl.v14i1.13447.
Xu, X., & Deng, Y. (2018). Utilization of Iron Ore Tailing for the Preparation of α-Fe2O3 Nanoparticles. Proceedings of the 4th Annual International Conference on Material Engineering and Application (ICMEA 2017), 146, 125–128. https://doi.org/10.2991/icmea-17.2018.29.
Xue, T., Wang, L., Qi, T., Chu, J., Qu, J., & Liu, C. (2009). Decomposition Kinetics of Titanium Slag in Sodium Hydroxide System. Hydrometallurgy, 95(1–2), 22–27. https://doi.org/10.1016/j.hydromet.2008.04.004.
Zhang, W., Zhu, Z., & Cheng, C. Y. (2011). A Literature Review of Titanium Metallurgical Processes. Hydrometallurgy, 108(3–4), 177–188. https://doi.org/10.1016/j.hydromet.2011.04.005.
Zulfalina, & Manaf, A. (2004). Identifikasi Senyawa Mineral dan Ekstraksi Titanium Dioksida dari Pasir Mineral. Jurnal Sains Materi Indonesia, 5(2), 46–50.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Analit: Analytical and Environmental Chemistry

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Authors retain copyright and acknowledge that the Analit : Analytical and Environmental Chemistry is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.


