EXTRACTION OF TITANIUM DIOXIDE (TiO2) FROM IRON SAND OF TEMBAKAK BEACH WEST COAST AS NANOPARTICLES USING HYDROMETALLURGY METHOD

Authors

  • Lisa Rahmawati Universitas Lampung
  • Sudibyo Badan Riset dan Inovasi Nasional (BRIN)
  • Dian Septiani Pratama Department of Chemistry, FMIPA, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1 Gedong Meneng, Rajabasa Bandar Lampung, Lampung 35145
  • Zipora Sembiring Department of Chemistry, FMIPA, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1 Gedong Meneng, Rajabasa Bandar Lampung, Lampung 35145
  • Suharso Suharso Department of Chemistry, FMIPA, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1 Gedong Meneng, Rajabasa Bandar Lampung, Lampung 35145
  • Tika Anggraeni BRIN Cibinong, Jl. Raya Jakarta-Bogor, KM 46, Cibinong, Bogor Regency, West Java
  • Sarwan Sarwan PT. Surveyor Carbon Consulting Indonesia, Jl. Lieutenant General R. Suprapto No. 89, RT.10/RW.04, Ramanuju, Purwakarta District, Cilegon City, Banten 42437

DOI:

https://doi.org/10.23960/analit.v9i01.165

Keywords:

Concentration, Extraction, Hydrometallurgy

Abstract

The iron sand sample came from Tembakak Beach, Pesisir Barat Regency, was prepared and then analyzed using XRF, obtained an Fe content of 58.294%; Si 18.525%; Ti 8.775%; Al 6.785%; Ca 3.885%; K 1.624%, as well as minor elements with a content below 0.5%. Titanium dioxide (TiO2) can be obtained from ilmenite (FeTiO3), by hydrometallurgical extraction methods. The extraction results were analyzed using XRF, obtained TiO2 at varying concentrations of HCl 7 Μ of 15.033%, HCl 9 Μ of 16.367%, and HCl 12 Μ of 17.421%. XRD characterization of TiO2 extraction results with variations in HCl concentration of 12 Μ shows that TiO2 has a rutile crystal phase with a tetragonal crystal structure, and has a particle size of 33.92 nm so that the TiO2 particles obtained are nanoparticles that play an important role in technological and industrial development.

 

 

References

Abdullah, M., Virgus, Y., & Khairurrijal. (2008). Review: Sintesis Nanomaterial. Jurnal Nanosains dan Nanoteknologi, 1(2), 33–57.

Acikgoz, M. (2012). A Study of The Impurity Structure for 3d3 (Cr3+ and Mn4+) Ions Doped into Rutile TiO2 Crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 417–422. https://doi.org/10.1016/j.saa.2011.10.061.

Agusu, L., & Yuliana. (2017). Fabrikasi Komposit Graphene/TiO2/PAni sebagai Bahan Elektroda Baterai Lithium-Ion (Li-Ion). Jurnal Aplikasi Fisika, 13(1), 33–40.

Akakuru, O. U., Iqbal, Z. M., & Wu, A. (2020). TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine. Germany: Wiley-VCH.

Anbarasu, M., Anandan, M., Chinnasamy, E., Gopinath, V., & Balamurugan, K. (2015). Synthesis and Characterization of Polyethylene Glycol (PEG) Coated Fe3O4 Nanoparticles by Chemical Co-Precipitation Method for Biomedical Applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 536–539. https://doi.org/10.1016/j.saa.2014.07.059.

Bahfie, F., Harahap, E. A., Alfarisy, M. I., & Arham, L. O. (2022). Pengolahan Pasir Besi untuk Meningkatkan Kadar Titanium (Ti) dengan Metode Pemisahan Magnetik Secara Basah. Inovasi Pembangunan: Jurnal Kelitbangan, 10(3), 237–246. https://doi.org/10.35450/jip.v10i03.323.

Dastan, D., & Chaure, N. B. (2014). Influence of Surfactants on TiO2 Nanoparticles Grown by Sol-Gel Technique. International Journal of Materials, Mechanics and Manufacturing, 2(1), 21–24. https://doi.org/10.7763/IJMMM.2014.V2.91.

El-Hazek, N., Lasheen, T. A., El-Sheikh, R., & Zaki, S. A. (2007). Hydrometallurgical Criteria for TiO2 Leaching from Rosetta Ilmenite by Hydrochloric Acid. Hydrometallurgy, 87(1–2), 45–50. https://doi.org/10.1016/j.hydromet.2007.01.003.

Ermawati, R., Naimah, S., & Ratnawati, E. (2011). Monitoring dan Ekstraksi TiO2 dari Pasir Mineral. Jurnal Kimia dan Kemasan, 33(2), 131–136. https://doi.org/10.24817/jkk.v33i2.1841.

Firdaus, I., Stevani, A., Handayani, Y. N., Febriyanti, N., Marjunus, R., & Manurung, P. (2021). Synthesis and Characterization of TiO2 from Lampung’s Iron Sand Using Leaching Method with Temperature Variation. Jurnal Fisika dan Aplikasinya, 17(2), 37–40. https://doi.org/10.12962/j24604682.v17i2.7921.

Izaak, M. P., Gunanto, Y. E., Sitompul, H., & Adi, W. A. (2021). The Optimation of Increasing TiO2 Purity Through a Multi-level Hydrometallurgical Process. Materials Today: Proceedings, 44, 3253–3257. https://doi.org/10.1016/j.matpr.2020.11.508.

Jalaludin, M., Giovano, H., & Baihaqy, M. (2021). Analisis Bentukan Lahan di Sepanjang Bukit Barisan, Kabupaten Pesisir Barat, Provinsi Lampung. Jurnal Samudra Geografi, 4(1), 10–15. https://doi.org/10.33059/jsg.v4i1.2485.

Jameel, Z. N., Haider, A. J., & Taha, S. Y. (2014). Synthesis of TiO2 Nanoparticles by Using Sol-Gel Method and its Applications as Antibacterial Agents. Engineering and Technology Journal, 32(3), 418–426. https://doi.org/10.30684/etj.32.3B.4.

Kim, H., Cho, M. Y., Kim, M. H., Park, K. Y., Gwon, H., Lee, Y., Roh, K. C., & Kang, K. (2013). A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode. Advanced Energy Materials, 3(11), 1500–1506. https://doi.org/10.1002/aenm.201300467.

Kim, T. K., Lee, M. N., Lee, S. H., Park, Y. C., Jung, C. K., & Boo, J. H. (2005). Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification. Thin Solid Films, 475(1–2), 171–177. https://doi.org/10.1016/j.tsf.2004.07.021.

Ko, H. H., Chen, H. T., Yen, F. L., Lu, W. C., Kuo, C. W., & Wang, M. C. (2012). Preparation of TiO2 Nanocrystallite Powders Coated with 9 mol% ZnO for Cosmetic Applications in Sunscreens. International Journal of Molecular Sciences, 13(2), 1658–1669. https://doi.org/10.3390/ijms13021658.

Komalasari, M., Akbar, T. F., & Sunendar, B. (2014). Pengaruh Konsentrasi Kitosan pada Sintesis Nanopartikel TiO2 untuk Aplikasi pada Dye Sensitized Solar Cell (DSSC). Jurnal Teknologi Bahan dan Barang Teknik, 4(1), 13–18. https://doi.org/10.37209/jtbbt.v4i1.42.

Lalasari, L. H., Firdiyono, F., Yuwono, A. H., Harjanto, S., & Suharno, B. (2012). Preparation, Decomposition, and Characterizations of Bangka - Indonesia Ilmenite (FeTiO3) Derived by Hydrothermal Method Using Concentrated NaOH Solution. Advanced Materials Research, 535–537, 750–756. https://doi.org/10.4028/www.scientific.net/AMR.535-537.750.

Larraza, I., Lopez-Gonzalez, M., Corrales, T., & Marcelo, G. (2012). Hybrid Materials: Magnetite–Polyethylenimine–Montmorillonite, as Magnetic Adsorbents for Cr(VI) Water Treatment. Journal of Colloid and Interface Science, 385(1), 24–33. https://doi.org/10.1016/j.jcis.2012.06.050.

Li, C., Liang, B., Song, H., Xu, J., & Wang, X. (2008). Preparation of Porous Rutile Titania from Ilmenite by Mechanical Activation and Subsequent Sulfuric Acid Leaching. Microporous and Mesoporous Materials, 115(3), 293–300. https://doi.org/10.1016/j.micromeso.2008.01.045.

Mahshid, S., Askari, M., & Ghamsari, M. S. (2007). Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. Journal of Materials Processing Technology, 189(1–3), 296–300. https://doi.org/10.1016/j.jmatprotec.2007.01.040.

Middlemas, S., Fang, Z. Z., & Fan, P. (2013). A New Method for Production of Titanium Dioxide Pigment. Hydrometallurgy, 131–132, 107–113. https://doi.org/10.1016/j.hydromet.2012.11.002.

Nguyen, T. H., & Lee, M. S. (2019). A Review on the Recovery of Titanium Dioxide from Ilmenite Ores by Direct Leaching Technologies. Mineral Processing and Extractive Metallurgy Review, 40(4), 231–247. https://doi.org/10.1080/08827508.2018.1502668.

Ningsih, S. K. W. (2016). Sintesis Anorganik. Padang: UNP Press Padang.

Priharyono, S. S., & Gusmarwani, S. R. (2022). Pengambilan Titanium Dioksida (TiO2) dari Pasir Besi Kulon Progo dengan Metode Hidrometalurgi (Variabel Waktu dan Perbandingan Massa). Jurnal Inovasi Proses, 7(1), 1–8. https://doi.org/10.34151/jip.v7i2.4222.

Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., & Edwards, P. P. (2002). Size-Dependent Chemistry: Properties of Nanocrystals. Chem. Eur. J., 8(1), 29–35. https://doi.org/10.34151/jip.v7i2.4222.

Rasyid, S. (2014). Teknologi Pengolahan Logam. Yogyakarta: Deepublish.

Rohmawati, L., Istiqomah, Wulancahayani, E., Hefdea, A., & Setyarsih, W. (2020). Nanocrystaline Titanium Dioxide Nanotube (TDN) by Hydrothermal Method from Tulungagung Mineral Sand. Proceedings of the International Conference on Research and Academic Community Services (ICRACOS 2019), 390, 107–109. https://doi.org/10.2991/icracos-19.2020.22.

Sari, A., & Suprapto. (2014). Studi Pengaruh Dekomposisi Pasir Besi dengan NaOH Terhadap Pemisahan Titanium. Jurnal Sains dan Seni Pomits, 1–7.

Sumari, S., Asrori, M. R., Prakasa, Y. F., Baharintasari, D. R., & Santoso, A. (2023). Silica Extract from Malang Beach Sand via Leaching and Sol-Gel Methods. International Journal of Advances in Applied Sciences, 12(1), 74–81. https://doi.org/10.11591/ijaas.v12.i1.pp74-81.

Supriyatna, Y. I., Sumardi, S., Astuti, W., Nainggolan, A. N., Ismail, A. W., Petrus, H. T. B. M., & Prasetya, A. (2020). Characterization and a Preliminary Study of TiO2 Synthesis from Lampung Iron Sand. Key Engineering Materials, 849, 113–118. https://doi.org/10.4028/www.scientific.net/KEM.849.113.

Tao, T., Qi-yuan, C., Hui-ping, H., Zhou-lan, Y., & Ying, C. (2012). TiO2 Nanoparticles Prepared by Hydrochloric Acid Leaching of Mechanically Activated and Carbothermic Reduced Ilmenite. Transactions of Nonferrous Metals Society of China, 22(5), 1232–1238. https://doi.org/10.1016/S1003-6326(11)61310-1.

Thahir, R., Wahab, A. W., Nafie, N. La, & Raya, I. (2019). Sintesis dan Karakterisasi Nanopartikel TiO2 sebagai Adsorben Pengolahan Limbah Zat Warna Methylene Blue. Jurnal Rekayasa Kimia dan Lingkungan, 14(1), 19–27. https://doi.org/10.23955/rkl.v14i1.13447.

Xu, X., & Deng, Y. (2018). Utilization of Iron Ore Tailing for the Preparation of α-Fe2O3 Nanoparticles. Proceedings of the 4th Annual International Conference on Material Engineering and Application (ICMEA 2017), 146, 125–128. https://doi.org/10.2991/icmea-17.2018.29.

Xue, T., Wang, L., Qi, T., Chu, J., Qu, J., & Liu, C. (2009). Decomposition Kinetics of Titanium Slag in Sodium Hydroxide System. Hydrometallurgy, 95(1–2), 22–27. https://doi.org/10.1016/j.hydromet.2008.04.004.

Zhang, W., Zhu, Z., & Cheng, C. Y. (2011). A Literature Review of Titanium Metallurgical Processes. Hydrometallurgy, 108(3–4), 177–188. https://doi.org/10.1016/j.hydromet.2011.04.005.

Zulfalina, & Manaf, A. (2004). Identifikasi Senyawa Mineral dan Ekstraksi Titanium Dioksida dari Pasir Mineral. Jurnal Sains Materi Indonesia, 5(2), 46–50.

Downloads

Published

2024-04-30

How to Cite

Lisa Rahmawati, Sudibyo, Pratama, D. S. ., Sembiring, Z. ., Suharso, S., Anggraeni, T. ., & Sarwan, S. (2024). EXTRACTION OF TITANIUM DIOXIDE (TiO2) FROM IRON SAND OF TEMBAKAK BEACH WEST COAST AS NANOPARTICLES USING HYDROMETALLURGY METHOD. Analit : Analytical and Environmental Chemistry, 9(01), 95–107. https://doi.org/10.23960/analit.v9i01.165

Most read articles by the same author(s)